martes, 28 de octubre de 2008

Leyes de los Exponentes

Primera ley: Producto de potencias con la misma base.

Ejemplo:

a³ • a²

Por la definición de potencia se tiene:

Graphics

donde a aparece 5 veces como factor, por lo tanto:

a³ • a² = a³+²

= Graphics

Al generalizar se afirma que:

El producto de potencias con la misma base (distinta de cero) es igual a la base elevada a la suma de los exponentes.

Graphics

Segunda ley: Cociente de potencias con la misma base

Ejemplo: Graphics

Por la definición de potencia se tiene:

Graphics

Al cancelar factores iguales queda:

Graphics

Al generalizar queda:

El cociente de potencias con la misma base es igual a la base elevada a la diferencia de los exponentes.

Graphics

Obsérvese ahora el siguiente ejemplo:

Graphics

y se sabe que:

Graphics

Por transitividad:

Graphics

De lo que se concluye que:

Todo número exponente negativo es igual a su inverso con exponente positivo

Graphics

Tercera ley: Potencia de una potencia

Ejemplo: Graphics

Por la definición de potencia se tiene:

Graphics

Apoyándose en la ley 1;

Graphics

Generalizando se tiene que:

La potencia de otra potencia de la misma base (distinta de cero) es igual que la base elevada al producto de los exponentes.

Graphics

Cuarta ley: Potencia de un producto

Ejemplo: (ab)³

Al aplicar la definición de potencia:

(ab)³ = ab • ab • ab

Aplicando la ley conmutativa:

(ab)³ = a • a • a • b • b • b

Y como la potencia es una multiplicación abreviada, queda:

a³b³

Generalizando, se tiene que:

La potencia de un producto es igual que el producto de la misma potencia de los factores

Graphics

Quinta ley: Cuando un cociente se eleva a una potencia

Ejemplo: Graphics

Aplicando la definición de potencia:

Graphics

Abreviando la multiplicación de fracciones:

Graphics

Al generalizar se tiene que:

Para elevar una fracción a un exponente se eleva el numerador y el denominador a dicho exponente.

Graphics

El texto completo se encuentra en http://lectura.ilce.edu.mx:3000/biblioteca/sites/telesec/curso3/htmlb/sec_27.html